
Scripting the Nimitz
The USS Nimitz in Arma 3 is a heavily scripted vehicle. Many of the capabilities of the carrier
are available as functions and can be used in missions. However, documentation on these
functions is particularly scarce and the existing modules documentation is slightly outdated,
though probably still useful. This document should help to bridge the gap and is of interest to
anyone who wants to automate Nimitz capabilities via script.

Parts and Pieces
Unlike most vehicles, the Nimitz is not a single object, but a few dozen objects combined to
present the carrier. This is possible in Arma 3 as an object can define an init function that run
as soon as the object is placed in Eden or spawned in a mission.
The Nimitz central object is called JDG_carrier_spawner and is itself an invisible object with a
few properties defined. Its init function is really where stuff happens: all the individual objects
that make up the Nimitz are spawned from the init function and hence the carrier is
completely assembled in game.
The list of objects that are assembled is:

_parts =
[

"JDG_carrier_nimspots",
"JDG_carrier_nimlights",
"JDG_carrier_nimlightsInternal",
"JDG_carrier_island",
"JDG_carrier_deck_0",
"JDG_carrier_deck_1",
"JDG_carrier_deck_2",
"JDG_carrier_deck_3",
"JDG_carrier_deck_4",
"JDG_carrier_deck_5",
"JDG_carrier_deck_6",
"JDG_carrier_deck_7",
"JDG_carrier_deck_8",
"JDG_carrier_deck_9",
"JDG_carrier_deck_10",
"JDG_carrier_deck_11",
"JDG_carrier_deck_12",
"JDG_carrier_deck_13",
"JDG_carrier_deck_14",
"JDG_carrier_ele_1",
"JDG_carrier_ele_2",
"JDG_carrier_ele_3",

"JDG_carrier_ele_4",
"JDG_carrier_hangar_0",
"JDG_carrier_hangar_1",
"JDG_carrier_hangar_2",
"JDG_carrier_hangar_3",
"JDG_carrier_hangar_4",
"JDG_carrier_second_deck_0",
"JDG_carrier_second_deck_1",
"JDG_carrier_second_deck_2",
"JDG_carrier_second_deck_3",
"JDG_carrier_second_deck_4",
"JDG_carrier_hangar_12r",
"JDG_carrier_hangar_34r",
"joe_nauticalbridge",
"JDG_dynamicAirportNimitz"

];

The current list of objects is best retrieved from inspecting JDG_carrier\functions\fn_init.sqf,
as the list will probably change over time.
Of all these objects one is of particular interest to any scripter: JDG_carrier_nimspots. I placed
it unbinarized on http://tetet.de/arma/arma3/nimitz/nimspots.p3d for easier use. The
nimspots object contains dozens of so called mem points that exactly pinpoint specific
locations on the carrier. Such locations as the catapults, the catapults terminating locations
and so forth.

Accessing the pieces
If you want to manipulate any of the objects you can retrieve a handle to it via the
JDG_carrier_spawner object. All pieces are set as variable in the spawner object.

// tie the part to the carrier spawner
_nimitz setVariable [_x, _part, true];
// same in reverse
_part setVariable ["TTT_NimitzParent", _nimitz, true];

This means that if you name your carrier for example Nimitz, you can retrieve the nimspots
object via:

private _nimspots = Nimitz getVariable "JDG_carrier_nimspots";

If for whatever reason you got the handle to an object of the Nimitz, you can get the
JDG_carrier_spawner object via the TTT_NimitzParent variable:

http://tetet.de/arma/arma3/nimitz/nimspots.p3d

private _carrier = _someObjectOfTheNimitz getVariable "TTT_NimitzParent";

Popular objects you may need are the above mentioned nimspots, the JDG_carrier_hangar_4
for setting the briefing room textures, and joe_nauticalbridge for setting the monitor
textures on the bridge.

Using a mempoint
As mentioned above, the nimspots object contains a number of mempoints that can be used
in scripts. For example, for spawning a F/A-18E on catapult 1:

private _spawnPos = _nimspots modelToWorld (_nimspots selectionPosition "C1");
private _spawnDir = getDir Nimitz;
private _plane = "JS_JC_FA18E" createVehicle _spawnPos;
_plane setPosASL [getPos _plane select 0, getPos _plane select 1, 17.5];
_plane setDir _spawnDir;

Note that the code deliberately places the plane on the deck (approx 17.5 meters above sea
level). The spawnDir is only approximate either, as it should actually be towards the end of
catapult 1 (“C1T” mempoint). This is left to the reader’s exercise.

Setting a texture
In Arma 3 objects can define so called hiddenSelections and on those one can apply textures
with setObjectTextureGlobal. For example, most of the monitors on the bridge can hold a
custom texture now. A sample code for this is:

_bridge setObjectTextureGlobal [0, "\path\to\texture\in\mission.paa"];

The 0 number is a reference to the first defined monitor, 1 to 14 are other possibilities.

Operating an elevator by script
One of the most prominent features of the Nimitz are the moving elevators. The code for
operating them is in a separate pbo from the main carrier: ttt_nimitzfunctions.pbo. This pbo
contains some graphics and a lot of code. The code is arranged in functions starting with ttt_
and can be viewed from the in game functions viewer.

The relevant function for operating an elevator is fn_elevator\fn_elevator.sqf. The function
takes two arguments:

1. The elevator object
2. One Number from 0,1,2,3

The numbers have special meanings:
● 0 - send elevator up for elevators 1 - 4
● 1 - send elevator down for elevators 1 - 4
● 2 - send weapons elevator up
● 3 - send weapons elevator down

Note that this is not a particularly nice piece of code, but it was kept like this for backward
compatibility.
To complete our tour on operating an elevator, here is some sample code to send elevator 4
to the hangar level:

private _elevator4 = Nimitz getVariable "JDG_carrier_ele_4";
[_elevator4, 1] spawn ttt_fnc_elevator;

Launching planes
Starting planes via the catapults is a nice feature to add some ambiance to the carrier
operations. In ttt_nimitzfunctions there is the function [Nimitz, _plane, 2] spawn

ttt_fnc_planeStart; that can be used. It is pretty much hardcoded what happens there, so if
you want to modify the start sequence, you best copy this function and adjust it to your
needs.
With the released function you can start for example a plane from catapult 2 via:

[Nimitz, _plane, 2] spawn ttt_fnc_planeStart;

You can then add additional waypoints to _plane and give it a tasking on your mission.

Landing planes
With the help of the dynamic airport object in the Nimitz AI can now land on the carrier.
Unfortunately I haven’t figured out how to use the arresting hook script automatically, so you
need to specify this in the script:

[_plane] spawn TTT_fnc_arrest;
_plane landAt (Nimitz getVariable "JDG_dynamicAirportNimitz");

Placing parked planes
The different ambiance modules of the Nimitz take care of placing aircraft and associated
vehicles on the carrier. However, at times the need for placement of only a few vehicles might
arise. For this purpose a set of functions in ttt_nimitzfunctions\fn_parking exist. The
different functions place aircraft and other vehicles on the carrier at the specified positions.
For that they make use of the fn_parkPlane.sqf and fn_parkVehicle.sqf functions. An
example from the ambiance module to park planes on the street:

[Nimitz, "JS_JC_FA18E", "cas", true] spawn TTT_fnc_parkStreet;

An overview of the different area and their names can be found at
http://www.combat.ws/S4/SAILOR/APNDX6.HTM

Resetting catapult and arresting wires
Unfortunately not all operations are smooth and sometimes it is required to do a hard reset
on specific subsystems of the Nimitz. This can either be caused by script errors or by human
error. Two functions exist for this purpose: fn_resetCat.sqf and fn_resetWires.sqf, both
found in ttt_nimitzfunctions\fn_reset. To reset both systems issue:

[Nimitz] call ttt_fnc_resetWires;
[Nimitz] call ttt_fnc_resetCat;

Enabling refuel on map objects
The Nimtech GOM aircraft loadout menu disables refueling for map objects. To change this
setting, add the following to the init of your mission:

//TTT_fnc_aircraftLoadout modified for use of vanilla resources

TTT_fnc_aircraftLoadout_NeedsFuelSource = false;
//(default: true) needs fuel supply within 50m of the aircraft or functions will be
unavailable

TTT_fnc_aircraftLoadout_NeedsAmmoSource = false;
//(default: true) needs ammo supply within 50m of the aircraft or functions will be
unavailable

http://www.combat.ws/S4/SAILOR/APNDX6.HTM

TTT_fnc_aircraftLoadout_NeedsRepairSource = false;
//(default: true) needs repair supply within 50m of the aircraft or functions will
be unavailable

TTT_fnc_removeFuelFromMapObjects = false;
//(default: true) will remove all fuel cargo from map objects like gas stations so
players can't land on the roof of a gas station for a maintenance free refill,
might affect other parts of your mission so choose carefully
true

For further references, check
ttt_nimitzfunctions/fn_loadout/fn_aircraftLoadoutParameters.sqf

Removing AA
To remove the AA crew and AA on a Nimitz named carrier, use:

{
{

deleteVehicle _x;
} forEach crew _x;
deleteVehicle _x;

} forEach (Nimitz getVariable 'TTT_nimitz_defenses');

Controlling the Jet Blast Deflectors (JBDs)
The JBDs are located on different objects of the Nimitz, so one first needs to gather these
objects. Then the regular animate command can be used to alter the JBD state. For a Nimitz
named carrier:

private _jbd1Obj = Nimitz getVariable "JDG_carrier_deck_5";
private _jbd2Obj = Nimitz getVariable "JDG_carrier_deck_4";
private _jbd3Obj = Nimitz getVariable "JDG_carrier_deck_8";
private _jbd4Obj = Nimitz getVariable "JDG_carrier_deck_10";

// raising the JBD1
{

_jbd1Obj animate [_x, 1];
} forEach ["ani_JBD1A", "ani_JBD1B", "ani_JBD1C"];

// lowering the JBD2

{
_jbd2Obj animate [_x, 0];

} forEach ["ani_JBD2A", "ani_JBD2B", "ani_JBD2C"];

The new event based launch
As of late May 2020 a new launch system for the catapults was scripted, using scripted event
handlers. This allows mission makers with scripting knowledge to tie in their own code in the
launch sequence. Currently the following events are available:

"ttt_nimitz_lowerLaunchbar" - initiated by ctrl-l (lower launchbar) on the catapult
"ttt_nimitz_launchPlane" - initiated ctrl-shift-l (salute) on the catapult
"ttt_nimitz_planeReadyForLaunch" - called from fn_launchCrew2.sqf when the cat crew is
ready
"ttt_nimitz_planeLaunching" - called from fn_launchPlane.sqf when the shooter has
played his animation and the plane is catapulted
"ttt_nimitz_planeLaunched" - called from fn_launchPlane.sqf when the plane is airborne

The events ttt_nimitz_lowerLaunchbar and ttt_nimitz_launchPlane are triggered by
CBA key events (ctrl-l and ctrl-shift-l by default). A scripted event handler can be used
on these events, for example to display Yanko’s weight board:

[_nimitz, "ttt_nimitz_planeReadyForLaunch", {(_this # 1) spawn
Yanko_fnc_calcWeight;}] call BIS_fnc_addScriptedEventHandler;

There are three arguments passed to each event script:

params ["_catName", "_plane", "_nimspots"];

If you need to access the carrier object itself, it’s available via

private _carrier = _nimspots getVariable "TTT_NimitzParent";

The function fn_catEventsInit.sqf defines all the regular event scripts for launching a
plane.

Launching AI planes via events

[f18] spawn ttt_fnc_startLaunch;

The f18 variable holds a reference to the plane, the function initiates the catapult events and
launches the plane automatically.

Landing AI planes via rope arrest

f18 landAt (nimitz getVariable "JDG_dynamicAirportNimitz");
f18 animateSource ["tailhook", 1];

The f18 variable holds a reference to the plane, the nimitz variable holds a reference to the
carrier. The tailhook animation will depend on the plane in use.
If the landing fails, you need to renew the effort after the ‘Landing canceled’ message in
systemChat is shown.

